Three paths to the rank metric

Finite geometry

M. Ceria
Politecnico di Bari

Finite projective spaces

Let us consider a prime power $q=p^{h}$ and denote by \mathbb{F}_{q} the finite field with size q.

Finite projective space $\operatorname{PG}(n, q)$ (a.k.a. $\operatorname{PG}(V)$):
let $V:=V(n+1, q)$ be a $n+1$-dimensional vector space over \mathbb{F}_{q}.
For $0 \leq k \leq n-1$ all k-dimensional projective subspaces of $\operatorname{PG}(n, q)$ are the $(k+1)$-vector subspaces of V.

- 0-projective subspace: point \rightarrow 1- vector subspace;
- 1-projective subspace: line \rightarrow 2- vector subspace;
- 2-projective subspace: plane $\rightarrow 3$ - vector subspace;
- 3-projective subspace: solid \rightarrow 4- vector subspace;
- and so on.

Collineations, semilinear maps, PROJECTIVITIES

Collineation
If V, W are equidimensional \mathbb{F}_{q} vector spaces, a collineation between $\operatorname{PG}(V)$ and $\operatorname{PG}(W)$ is a bijection between their points with the property of preserving incidence.

Let $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ and $A \in G L_{n+1}(q)$
Semilinear isomorphism

$$
F_{\sigma, A}: V(n+1, q) \rightarrow V(n+1, q)
$$

such that, for $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
F_{\sigma, A}(\overline{\mathbf{x}})=\sigma(\overline{\mathbf{x}}) A_{T}
$$

where $\sigma(\overline{\mathbf{x}})=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$
$F_{\sigma, A} \in \Gamma L(n+1, q)$

Collineations, semilinear maps, PROJECTIVITIES

Semilinear isomorphism

$$
F_{\sigma, A}: V(n+1, q) \rightarrow V(n+1, q)
$$

such that, for $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
F_{\sigma, A}(\overline{\mathbf{x}})=\sigma(\overline{\mathbf{x}}) A_{T}
$$

where $\sigma(\overline{\mathbf{x}})=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$

It defines a bijection among the points of $\operatorname{PG}(n, q)$ which preserves incidence: projective semilinear map.

Collineations, semilinear maps, PROJECTIVITIES

SEmilinear isomorphism

$$
F_{\sigma, A}: V(n+1, q) \rightarrow V(n+1, q)
$$

such that, for $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
F_{\sigma, A}(\overline{\mathbf{x}})=\sigma(\overline{\mathbf{x}}) A_{T}
$$

where $\sigma(\overline{\mathbf{x}})=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$

For $\sigma=I d$ we have a projectivity

Collineations, semilinear maps, Projectivities

For $\sigma=I d$ we have a projectivity
$P \Gamma L(n+1, q)=\{$ all projective semilinear maps $\}$
$\operatorname{PGL}(n+1, q)=\{$ all projectivities $\}$

Collineations, semilinear maps, Projectivities

Each automorphism $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ induces a collineation of $\operatorname{PG}(n, q)$
$F_{\sigma, A}, G_{\sigma^{\prime}, B}$ induce the same collineation if and only if they differ by the multipilcation by a scalar matrix:

$$
\sigma=\sigma^{\prime} \quad A=\mu B, \mu \in \mathbb{F}_{q}^{*}
$$

Collineations, SEMILINEAR mAPS, PROJECTIVITIES

$F_{\sigma, A}, G_{\sigma^{\prime}, B}$ induce the same collineation if and only if they differ by the multipilcation by a scalar matrix:

$$
\sigma=\sigma^{\prime} \quad A=\mu B, \mu \in \mathbb{F}_{q}^{*}
$$

$$
\begin{aligned}
& P \Gamma L(n+1, q)=\Gamma L_{n+1}(q) / Z\left(\Gamma L_{n+1}(q)\right) \\
& P G L(n+1, q)=G L_{n+1}(q) / Z\left(G L_{n+1}(q)\right)
\end{aligned}
$$

where

$$
Z\left(\Gamma L_{n+1}(q)\right)=Z\left(G L_{n+1}(q)\right)=\left\{\lambda I: \lambda \in \mathbb{F}_{q}^{*}\right\} \simeq \mathbb{F}_{q}^{*}
$$

Collineations, RECIPROCITIES, POLARITIES

Dual of PG(V)
$\operatorname{PG}(n, q)^{*}:=\operatorname{PG}\left(V^{*}\right)$: points are hyperplanes of $\operatorname{PG}(n, q)$ and so on; incidence is reversed.

Reciprocity - polarity
Reciprocity: a collineation ρ between $\operatorname{PG}(n, q)$ and $\operatorname{PG}(n, q)^{*}$. If it has order 2 it is a polarity.

Textbook

ABNR

Gianira N. Alfarano, Martino Borello, Alessandro Neri, Alberto Ravagnani
Linear cutting blocking sets and minimal codes in the rank metric Journal of Combinatorial Theory, Series A 192 (2022): 105658.

Support - VRMC

$C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$ VRMC; $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} :

$$
\operatorname{supp}(\overline{\mathbf{v}})=\operatorname{colsp}(\Gamma(\overline{\mathbf{v}})) \leq\left(\mathbb{F}_{q}\right)^{n}
$$

is the (rank) support of $\overline{\mathbf{v}} \in C$, and it is a \mathbb{F}_{q}-linear space.

Rank weight: $r(\overline{\mathbf{v}})=\operatorname{dim}_{\mathbb{F}_{q}}(\operatorname{supp}(\overline{\mathbf{v}}))$
$D \leq C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$

$$
\operatorname{supp}(D)=\sum_{v \in D} \operatorname{supp}(\overline{\mathbf{v}}) \leq\left(\mathbb{F}_{q}\right)^{n}
$$

NoN-DEGENERATE CODE

$C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$ VRMC with length n and dimension k.

It is nondegenerate if

$$
\operatorname{Supp}(C)=\mathbb{F}_{q^{n}}
$$

Effettive length

$\operatorname{dim}(\operatorname{Supp}(C))$

RANK-NONDEGENERATE CODES

$C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$ VRMC
TFAE

- C rank-nondegenerate;
- for every $A \in G L_{n}(q)$, the code $C A$ is nondegenerate w.r.t. the Hamming metric;
- The \mathbb{F}_{q}-span of the columns of any generator matrix of G has dimension n over \mathbb{F}_{q};
- $d\left(C^{\perp}\right) \geq 2$.

We can isometrically embed a degenerate code in a smaller-length space.
For C nondegenerate, it holds $n \leq k m$ (JP).

Projective systems (q-analogue)

R
$[n, k, d]_{q^{m} / q}$ system

$$
U \leq\left(\mathbb{F}_{q^{m}}\right)^{k}
$$

\mathbb{F}_{q}-space, $\operatorname{dim}_{\mathbb{F}_{q}}(U)=n$ such that

$$
\langle U\rangle_{\mathbb{F}_{q^{m}}}=\left(\mathbb{F}_{q^{m}}\right)^{k}
$$

and

$$
d=n-\max \left\{\operatorname{dim}_{\mathbb{F}_{q}}(U \cap H): H \leq\left(\mathbb{F}_{q^{m}}\right)^{k}, \mathbb{F}_{q^{m}}-\text { hyperplane }\right\}
$$

I.E

$$
d=\min \left\{\operatorname{dim}_{\mathbb{F}_{q}}(U+H): H \leq\left(\mathbb{F}_{q^{m}}\right)^{k}, \mathbb{F}_{q^{m}}-\text { hyperplane }\right\}-m(k-1)
$$

Equivalent projective systems

$U, V,[n, k, d]_{q^{m} / q}$ systems

Equivalent

if there is a $\mathbb{F}_{q^{m}}$-isomorphism $\phi:\left(\mathbb{F}_{q^{m}}\right)^{k} \rightarrow\left(\mathbb{F}_{q^{m}}\right)^{k}$ sending U to V

STANDARD EQUATION

$U,[n, k, d]_{q^{m} / q}$ system.

Call Λ_{r} the set of all r-dimensional subspaces of $\left(\mathbb{F}_{q^{m}}\right)^{k}$ over $\mathbb{F}_{q^{m}}$

$$
\sum_{H \in \Lambda_{r}}|H \cap(U \backslash\{0\})|=\left(q^{n}-1\right)\left[\begin{array}{l}
k-1 \\
r-1
\end{array}\right]_{q^{m}}
$$

Codes and systems

Set of equivalence classes of $[n, k, d]_{q^{m} / q}$ nondegenerate codes: $C[n, k, d]_{q^{m} / q}$

Set of equivalence classes of $[n, k, d]_{q^{m} / q}$ systems: $U[n, k, d]_{q^{m} / q}$

From codes to systems

We define a map

$$
\Phi: C[n, k, d]_{q^{m} / q} \rightarrow U[n, k, d]_{q^{m} / q}
$$

in this way:

- take $[C] \in C[n, k, d]_{q^{m} / q}$
- let G be a generator matrix for C
- $\Phi([C])$: equivalence class of the \mathbb{F}_{q}-span of the columns of G.

From systems to codes

We define a map

$$
\Psi: U[n, k, d]_{q^{m} / q} \rightarrow C[n, k, d]_{q^{m} / q}
$$

in this way:

- take $[U] \in U[n, k, d]_{q^{m} / q}$
- fix a basis $\left\{g_{1}, \ldots, g_{n}\right\}$ for U;
- let G be the matrix whose columns are g_{1}, \ldots, g_{n}
- $\Phi([U])$: equivalence class of the code generated by G.

Recall from the basics

For $\overline{\mathbf{v}} \in\left(\mathbb{F}_{q^{m}}\right)^{n}, \overline{\mathbf{v}}=\left(v_{1}, \ldots, v_{n}\right), v_{i} \in \mathbb{F}_{q^{m}}, 1 \leq i \leq n$.

$$
r(\overline{\mathbf{v}})=\operatorname{dim}_{\mathbb{R}_{q}}\left(\left\langle v_{1}, \ldots, v_{n}\right\rangle\right)
$$

$C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$

- $C \neq 0$:

$$
d_{\min }(C)=\min \{r(\overline{\mathbf{v}}): \overline{\mathbf{v}} \in C, \overline{\mathbf{v}} \neq \overline{\mathbf{0}}\}
$$

- $C=0$:

$$
d_{\min }(C)=d_{\min }(0)=n+1
$$

Recall from the basics

Note that

$$
d_{\min }(C) \leq d^{H}(C)
$$

For $\overline{\mathbf{v}} \in\left(\mathbb{F}_{q^{m}}\right)^{n}, \overline{\mathbf{v}}=\left(v_{1}, \ldots, v_{n}\right), v_{i} \in \mathbb{F}_{q^{m}}, 1 \leq i \leq n$.

$$
r(\overline{\mathbf{v}})=\min \left\{w^{H}(\overline{\mathbf{v}} A): A \in G L_{n}(q)\right\}
$$

Bases and dimensions

Take a finite-dimensional vector space V over \mathbb{F}_{q}. Let $U, W \leq V$;

$$
\mathcal{B}:=\{\text { bases of } U\}
$$

$\max \{|B \cap W|: \quad B \in \mathcal{B}\}=\operatorname{dim}(U \cap W)$.

Again on the rank

$C[n, k]_{q^{m} / q}$ nondegenerate code, with generator matrix G. Let $\overline{\mathbf{u}} \in\left(\mathbb{F}_{q^{m}}\right)^{k}$ a nonzero vector.

If U is the $[n, k]_{q^{m} / q}$ system generated by the columns of G over \mathbb{F}_{q}

$$
r(\overline{\mathbf{u}} G)=n-\operatorname{dim}_{\mathbb{F}_{q}}\left(U \cap\langle\overline{\mathbf{u}}\rangle^{\perp}\right)
$$

Back and forth

R
Φ, Ψ are well-defined maps and they're one the inverse of the other.

There's then a bijection between $C[n, k, d]_{q^{m} / q}$ and $U[n, k, d]_{q^{m} / q}$

Minimum distance

$C[n, k, d]_{q^{m} / q}$ code:

$$
d \geq \operatorname{dim}_{\mathbb{F}_{q}}(\operatorname{supp}(C))-m(k-1)
$$

Maximum rank

$C[n, k]_{q^{m} / q}$ nondegenerate code:

$$
\operatorname{maxr}(C)=\min \{n, m\}
$$

Ravagnani
$C[n, k]_{q^{m} / q}$ code; $\operatorname{maxr}(C)=k$. If $m \geq n$ then C has a basis given by vectors with all components in \mathbb{F}_{q}.

Generalized weights

$C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$ VRMC.
v5 - Randrianarisoa
$w_{i}(C)=\min \left\{\operatorname{dim}(A): A \leq\left(\mathbb{F}_{q^{m}}\right)^{n}\right.$, Frobenius closed $\left.\operatorname{dim}_{\mathbb{F}_{q^{m}}}(C \cap A) \geq i\right\}$
for $i=1, \ldots, \operatorname{dim}_{\mathbb{F}_{q^{m}}}(C)=k$.

Generalized weights

Randrianarisoa
$C:[n, k, d]_{q^{m} / q}$ nondegenerate code and
$U:[n, k, d]_{q^{m} / q}$ system associated to the code.

For any $i=1, \ldots, \operatorname{dim}_{\mathbb{F}_{q^{m}}}(C)=k$
$w_{i}(C)=n-\max \left\{\operatorname{dim}_{\mathbb{F}_{q}}(U \cap H): H \leq\left(\mathbb{F}_{q^{m}}\right)^{k}, \mathbb{F}_{q^{m}}-\right.$ subspace, $\operatorname{codim}(H)=i\}$
$=\min \left\{\operatorname{dim}_{\mathbb{F}_{q}}(U+H): H \leq\left(\mathbb{F}_{q^{m}}\right)^{k}, \mathbb{F}_{q^{m}}-\right.$ subspace, $\operatorname{codim}(H)=i\}-m(k-i)$

Simplex RMC

$C[m k, k]_{q^{m} / q}$ code with $k \geq 2$ and generator matrix G.
TFAE

- C nondegenerate;
- $\operatorname{colsp}_{\mathbb{F}_{q}}(G)=\left(\mathbb{F}_{q^{m}}\right)^{k}$;
- C 1-weight code, $d_{\text {min }}(C)=m$;
- $d_{\text {min }}\left(C^{\perp}\right)>1$;
- $d_{\text {min }}\left(C^{\perp}\right)=2$;
- C linearly equivalent to a code with generator matrix

$$
\begin{aligned}
& G^{\prime}=\left(I_{k}\left|\alpha I_{k}\right| \ldots \mid \alpha^{m-1} l_{k}\right) \\
& \alpha \in \mathbb{F}_{q^{m}} \text { with } \mathbb{F}_{q^{m}}=\mathbb{F}_{q}(\alpha)
\end{aligned}
$$

1-WEIGHT CODES

$C[n, k, d]_{q^{m} / q}$ one-weight code with $k \geq 2$.

- effective length: km;
- $d=m$.

Isometry:
$[k m, k, m]_{q^{m} / q}$ simplex code.

Linear set

Lunardon

$U:[n, k]_{q^{m} / q}$ system.
\mathbb{F}_{q}-linear set in $\operatorname{PG}(k-1, q)$ of rank n associated to U :

$$
L_{U}=\left\{\langle\overline{\mathbf{u}}\rangle_{\mathbb{F}_{q^{m}}}: \overline{\mathbf{u}} \in U \backslash\{\overline{\mathbf{0}}\}\right\}
$$

$\left(\langle\overline{\mathbf{u}}\rangle_{\mathbb{F}_{q^{m}}}\right.$ projective point corresponding to $\left.\overline{\mathbf{u}}\right)$.

Linear set

$V \leq\left(\mathbb{F}_{q^{m}}\right)^{k}, \mathbb{F}_{q^{m}}$-subspace.

$$
\Lambda=\operatorname{PG}\left(V, \mathbb{F}_{q^{m}}\right)
$$

Weight of $\Lambda_{\text {in }} L_{U}$

$$
W_{U}(\Lambda)=\operatorname{dim}_{\mathbb{F}_{q}}(U \cap V)
$$

Scattered linear sets

Blokhuis-Lavrauw
$U:[n, k]_{q^{m} / q}$ system.

$$
\left|L_{u}\right| \leq \frac{q^{n}-1}{q-1}=1+q+\ldots+q^{n-1}
$$

Scattered
When equality $\Leftrightarrow w_{U}(P)=1$ for all $P \in L_{U}$.
Maximum: biggest possible rank.

Link with the Hamming metric

ABNR

$U:[n, k]_{q^{m} / q}$ system.

$$
\sum_{P \in \mathbf{P G}\left(k-1, q^{m}\right)} \frac{q^{w_{u}(P)}-1}{q-1}=\frac{q^{n}-1}{q-1}
$$

Link with the Hamming metric

Sheekey - ABNR
$U:[n, k]_{q^{m} / q}$ system.
$P \in \operatorname{PG}\left(k-1, q^{m}\right)$

$$
\begin{gathered}
\boldsymbol{m}_{U}(P):=\frac{q^{w_{U}(P)}-1}{q-1} \\
\sum_{P \in \mathbf{P G}\left(k-1, q^{m}\right)} m_{U}(P)=\frac{q^{n}-1}{q-1} .
\end{gathered}
$$

Projective systems and linear systems

$U(n, k)_{q^{m} / q}:[n, k]_{q^{m} / q}$ systems $P(n, k)_{q^{m}}:[n, k]_{q^{m}}$ projective systems

$$
\begin{aligned}
& U(n, k)_{q^{m} / q} \rightarrow P\left(\left(q^{n}-1\right) /(q-1), k\right)_{q^{m}} \\
& U \mapsto\left(L_{U}, m_{U}\right)
\end{aligned}
$$

Multiset L_{U}, m_{U} multiplicity function.
The map is compatible with the equivalence classes of these objects.

Projective systems and linear systems

$U[n, k]_{q^{m} / q}$: equivalence classes of $[n, k]_{q^{m} / q}$ systems $P[n, k]_{q^{m}}$: equivalence classes of $[n, k]_{q^{m}}$ projective systems

$$
E x t^{H}: U[n, k]_{q^{m} / q} \rightarrow P\left[\left(q^{n}-1\right) /(q-1), k\right]_{q^{m}}
$$

Associated Hamming Code

$E x t^{H}: U[n, k, d]_{q^{m} / q} \rightarrow P\left[\left(q^{n}-1\right) /(q-1), k,\left(q^{n}-q^{n-d}\right) /(q-1)\right]_{q^{m}}$
C nondegenerate $[n, k, d]_{q^{m} / q}$ VRMC.
Associated Hamming Code: any code in $\left(\Psi^{H} \circ E x t^{H} \circ \Phi\right)([C])$. Parameters:

$$
\left[\left(q^{n}-1\right) /(q-1), k,\left(q^{n}-q^{n-d}\right) /(q-1)\right]_{q^{m}}
$$

Associated Hamming Code

C nondegenerate $[n, k, d]_{q^{m} / q}$ VRMC; rank-weight distribution $\left\{A_{i}(C)\right\} ;$

$$
A_{i}^{H}\left(C^{H}\right)= \begin{cases}A_{i}(C) & \text { if } j=\frac{q^{n}-q^{n-i}}{q-1} \\ 0 & \text { otherwise }\end{cases}
$$

Associated Hamming Code

C nondegenerate $[n, k, d]_{q^{m} / q}$ VRMC; generalized weights $\left\{w_{i}(C)\right\}$;

$$
w_{i}^{H}\left(C^{H}\right)=\frac{q^{n}-q^{n-w_{i}(C)}}{q-1}
$$

Minimal codeword

$C:[n, k, d]_{q^{m} / q}$ VRMC;
Minimal
$\overline{\mathbf{c}} \in C$: if there is $\overline{\mathbf{c}}^{\prime}$ with $\operatorname{supp}\left(\overline{\mathbf{c}}^{\prime}\right) \subseteq \operatorname{supp}(\overline{\mathbf{c}})$ it means that the two codewords are one multiple of the other.

Linear cutting blocking set

$U[n, k]_{q^{m} / q}$ system is a linear cutting blocking set if for each H $\mathbb{F}_{q^{m}}$-hyperplane $\langle H \cap U\rangle_{\mathbb{F}_{q^{m}}}=H$.

Idea: the associated linear set L_{U} cutting blocking set in $\operatorname{PG}\left(k-1, q^{m}\right)$.

Characterizing linear cutting blocking sets

$U:[n, k]_{q^{m} / q}$ system. Linear cutting blocking set if and only if for each $H, H^{\prime} \mathbb{F}_{q^{m}}$-hyperplanes in $\left(\mathbb{F}_{q^{m}}\right)^{k}$

$$
H \cap U \subseteq H^{\prime} \cap U \Rightarrow H=H^{\prime}
$$

$U[n, k]_{q^{m} / q}$ linear cutting blocking set, for each $H \mathbb{F}_{q^{m}}$-hyperplane in $\left(\mathbb{F}_{q^{m}}\right)^{k}$

$$
|H \cap U| \geq q^{k-1}
$$

A correspondence...

$C[n, k]_{q^{m} / q}$ nondegenerate code and U its associated system. Let G be a generator matrix for C. $\overline{\mathbf{u}}, \overline{\mathbf{v}} \in\left(\mathbb{F}_{q^{m}}\right)^{k} \backslash\{\overline{\mathbf{0}}\}$

$$
\operatorname{supp}(\overline{\mathbf{u}} G) \subseteq \operatorname{supp}(\overline{\mathbf{v}} G) \Leftrightarrow\left(U \cap\langle\overline{\mathbf{u}}\rangle^{\perp}\right) \supseteq\left(U \cap\langle\overline{\mathbf{v}}\rangle^{\perp}\right)
$$

... THAT WE ALREADY SAW...

$$
\begin{aligned}
\Phi: C[n, k, d]_{q^{m} / q} & \rightarrow U[n, k, d]_{q^{m} / q} \\
\Psi: U[n, k, d]_{q^{m} / q} & \rightarrow C[n, k, d]_{q^{m} / q}
\end{aligned}
$$

Φ, Ψ are well-defined maps and they're one the inverse of the other.

There's then a bijection between $C[n, k, d]_{q^{m} / q}$ and $U[n, k, d]_{q^{m} / q}$

... REVISITED

Φ, Ψ are well-defined maps and they're one the inverse of the other.

They induce a bijection between minimal RMC and linear cutting blocking sets.

New minimal codes

$C[n, k]_{q^{m} / q}$ minimal code; G generator matrix, $\overline{\mathbf{u}} \in\left(\mathbb{F}_{q^{m}}\right)^{k}$

The $[n+1, k]_{q^{m} / q}$ code \bar{C} whose generator matrix is $\left(G \mid \bar{u}_{T}\right)$ is minimal.

New minimal codes

$C[n, k]_{q^{m} / q}$ minimal code.
Then

$$
\begin{gathered}
\forall \overline{\mathbf{c}} \in C \quad r(\overline{\mathbf{c}}) \leq \operatorname{dim}_{\mathbb{F}_{q}}(\operatorname{supp}(C))-k+1 \\
\operatorname{maxr}(C) \leq \operatorname{dim}_{\mathbb{F}_{q}}(\operatorname{supp}(C))-k+1 \leq n-k+1
\end{gathered}
$$

$k \geq 2$

$$
n \geq k+m-1
$$

Connecting with Hamming minimal codes

$C[n, k]_{q^{m} / q}$ code.
Hamming minimal \Rightarrow rank-minimal
\nLeftarrow
$C[n, k]_{q^{m} / q}$ nondegenerate code.
C rank-minimal $\Leftrightarrow C^{H}$ Hamming minimal

Minimality condition

$C[n, k]_{q^{m} / q}$ code.
C is minimal if and only if, for each $\overline{\mathbf{c}}, \overline{\mathbf{c}}^{\prime} \in C$ linearly independent, it holds

$$
\sum_{\lambda \in \mathbb{F}_{q^{m}} \backslash\{0\}} q^{-r\left(\overline{\mathbf{c}}+\lambda \overline{\mathbf{c}}^{\prime}\right)} \neq\left(q^{m}-1\right) q^{-r(\overline{\mathbf{c}})}-q^{-r\left(\overline{\mathbf{c}}^{\prime}\right)}+1
$$

Ashikmin-Barg condition

Hamming case
$C[n, k]_{q^{m}}$ code.

$$
C \text { minimal } \Leftrightarrow \frac{w_{\text {max }}}{w_{\text {min }}}<\frac{q^{m}}{q^{m}-1}
$$

In the rank-metric
The condition becomes trivial.

Some minimal codes

$C \quad[k m, k, m]_{q^{m} / q}$ simplex code.
$\Rightarrow C$ is minimal

A C nondegenerate $[n, k]_{q^{m} / q}$ code with $n \geq(k-1) m+1$ is minimal

$$
k=3
$$

A C nondegenerate $[n, 3]_{q^{m} / q}$ code with $n \geq m+2$ is minimal and with U as associated $[n, 3]_{q^{m} / q}$ system .

$$
L_{U} \text { scattered } \Rightarrow C \text { minimal }
$$

Blokhuis-Lavrauw
If $U[n, k]_{q^{m} / q}$ system with L_{U} scattered then

$$
n \leq \frac{k m}{2}
$$

Maximum scattered linear sets: equality.

Scattered linear sets

km even number - Csajbóк-Marino-Polverino-Zullo
There's a system U with parameters $[k m / 2, k]_{q^{m} / q}$ s.t. L_{U} scattered km ODD NUMBER
Still much to do

Scattered linear sets

Blockhuis-Lavrauw
k, m positive integers, q prime power. The there exist a $[a b, k]_{q^{m} / q}$ system s.t. L_{U} scattered every time $a \mid k, \operatorname{GCD}(a, m)=1$

$$
a b< \begin{cases}\frac{k m-m+3}{2} & q=2, a=1 \\ \frac{k m-m+3+a}{2} & \text { otherwise }\end{cases}
$$

Puncturing

U with parameters $[n, k]_{q^{m} / q}$ s.t. L_{U} scattered. If $n>k$ there is a $[n-1, k]_{q^{m} / q}$ system $V \subseteq U$ such that also L_{v} is scattered.

What happens then in dimension 3

$m \neq 3,5 \bmod 6, m \geq 4$.

There is then a nondegenerate minimal $[m+2,3]_{q^{m} / q}$ code.

Existence of minimal codes

m, n, k positive integers, $n \geq k \geq 2$. If the value

$$
\frac{\left(q^{m n}-1\right)\left(q^{m(n-1)}-1\right)}{\left(q^{m k}-1\right)\left(q^{m(k-1)}-1\right)}-\frac{1}{2} \sum_{i=2}^{m} \frac{1}{q^{m}-1}\left[\begin{array}{c}
m \\
i
\end{array} \prod_{q} \prod_{j=0}^{i-1}\left(q^{n}-q^{j}\right)\left(\frac{q^{m i}-1}{q^{m}-1}-1\right)\right.
$$

is positive, then there exists a minimal code with parameters $[n, k]_{q^{m} / q}$.

For each $m, k \geq 2$ there exists a minimal $[2 k+m-2, k]_{q^{m} / q}$ code.

Linearity index

$U[n, k]_{q^{m} / q}$ system
Linearity index:

$$
I(U):=\max \left\{\operatorname{dim}_{\mathbb{F}_{q^{m}}}(H): H \subseteq\left(\mathbb{F}_{q^{m}}\right)^{k}, \mathbb{F}_{q^{m}}-\text { subspace }, H \subseteq U\right\}
$$

Invariant for equivalent systems. Related to the generalized weights

LINEARITY INDEX OF A CODE

$C[n, k]_{q^{m} / q}$ nondegenerate code and U an $[n, k]_{q^{m} / q}$ associated system.

$$
I(U)=k-\min \left\{i: w_{i}(C)=n-(k-i) m\right\}
$$

LINEARITY INDEX AND CODES

$C[n, k]_{q^{m} / q}$ nondegenerate code and l is its linearity index.

$$
w_{i+1}(C)-w_{i}(C)=m \Leftrightarrow i \geq k-I(C)
$$

$C[n, k]_{q^{m} / q}$ nondegenerate code

$$
I(C) \geq n-k(m-1)
$$

LINEARITY INDEX AND CODES

U linear cutting blocking set with parameters $[n, k]_{q^{m} / q}$ and suppose there is $T \leq\left(\mathbb{F}_{q^{m}}\right)^{k}$ a $\mathbb{F}_{q^{m}}$-subspace with $\operatorname{dim}_{\mathbb{F}_{q^{m}}}(T)=I$, $T \subseteq U$. Then U / T is isomorphic to a linear cutting blocking set of parameters $[n-I m, k-I]_{q^{m} / q}$.
U linear cutting blocking set with parameters $[n, k]_{q^{m} / q}$ with linearity index I. Suppose $k-I \geq 2$:

$$
n-k \geq(I+1)(m-1)
$$

Let C be the nondegenerate $[n, k]_{q^{m} / q}$ code associated to U. For each $1 \leq i \leq k-\left\lceil\frac{n-k+1}{m-1}\right\rceil-1, w_{i}(C)>n-i m$.

LINEARITY INDEX AND CODES

C nondegenerate $[(k-1) m, k]_{q^{m} / q}$ code with $I(C)=I$.
TFAE

- C minimal
- $1<k-2$
- $w_{2}(C)>m$
$k \geq 3$ integer. There is a nondegenerate $[(k-1) m, k]_{q^{m} / q}$ code iff $m \geq 3$

Thank you for your attention!

