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Finite projective spaces

Let us consider a prime power q = ph and denote by Fq the finite
field with size q.

Finite projective space PG(n, q) (a.k.a. PG(V)):
let V := V(n + 1, q) be a n + 1-dimensional vector space over Fq.
For 0 ≤ k ≤ n − 1 all k -dimensional projective subspaces of
PG(n, q) are the (k + 1)-vector subspaces of V .

• 0-projective subspace: point→ 1- vector subspace;
• 1-projective subspace: line→ 2- vector subspace;
• 2-projective subspace: plane→ 3- vector subspace;
• 3-projective subspace: solid→ 4- vector subspace;
• and so on.
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Collineations, semilinear maps, projectivities
Collineation
If V ,W are equidimensional Fq vector spaces, a collineation
between PG(V) and PG(W) is a bijection between their points with
the property of preserving incidence.

Let σ ∈ Aut(Fq) and A ∈ GLn+1(q)

Semilinear isomorphism

Fσ,A : V(n + 1, q)→ V(n + 1, q)

such that, for x = (x1, ..., xn):

Fσ,A (x) = σ(x)AT

where σ(x) = (σ(x1), ..., σ(xn))

Fσ,A ∈ ΓL(n + 1, q)
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Collineations, semilinear maps, projectivities

Semilinear isomorphism

Fσ,A : V(n + 1, q)→ V(n + 1, q)

such that, for x = (x1, ..., xn):

Fσ,A (x) = σ(x)AT

where σ(x) = (σ(x1), ..., σ(xn))

It defines a bijection among the points of PG(n, q) which preserves
incidence: projective semilinear map.
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Collineations, semilinear maps, projectivities

Semilinear isomorphism

Fσ,A : V(n + 1, q)→ V(n + 1, q)

such that, for x = (x1, ..., xn):

Fσ,A (x) = σ(x)AT

where σ(x) = (σ(x1), ..., σ(xn))

For σ = Id we have a projectivity
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Collineations, semilinear maps, projectivities

For σ = Id we have a projectivity

PΓL(n + 1, q) = { all projective semilinear maps}

PGL(n + 1, q) = { all projectivities}
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Collineations, semilinear maps, projectivities

Each automorphism σ ∈ Aut(Fq) induces a collineation of PG(n, q)

Fσ,A ,Gσ′,B induce the same collineation if and only if they differ by
the multipilcation by a scalar matrix:

σ = σ′ A = µB , µ ∈ F∗q
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Collineations, semilinear maps, projectivities

Fσ,A ,Gσ′,B induce the same collineation if and only if they differ by
the multipilcation by a scalar matrix:

σ = σ′ A = µB , µ ∈ F∗q

,

PΓL(n + 1, q) = ΓLn+1(q)/Z(ΓLn+1(q))

PGL(n + 1, q) = GLn+1(q)/Z(GLn+1(q))

where

Z(ΓLn+1(q)) = Z(GLn+1(q)) = {λI : λ ∈ F∗q} ≃ F
∗
q
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Collineations, reciprocities, polarities

Dual of PG(V)

PG(n, q)∗ := PG(V∗): points are hyperplanes of PG(n, q) and so
on; incidence is reversed.

Reciprocity - polarity
Reciprocity: a collineation ρ between PG(n, q) and PG(n, q)∗.
If it has order 2 it is a polarity.
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Textbook

ABNR
Gianira N. Alfarano, Martino Borello, Alessandro Neri, Alberto
Ravagnani
Linear cutting blocking sets and minimal codes in the rank metric
Journal of Combinatorial Theory, Series A 192 (2022): 105658.
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Support – VRMC

C ≤ (Fqm)n VRMC; Γ = {γ1, . . . , γm} a basis of Fqm over Fq:

supp(v) = colsp(Γ(v)) ≤ (Fq)
n

is the (rank) support of v ∈ C, and it is a Fq-linear space.

Rank weight: r(v) = dimFq(supp(v))

D ≤ C ≤ (Fqm)n

supp(D) =
∑
v∈D

supp(v) ≤ (Fq)
n.
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Non-degenerate code

C ≤ (Fqm)n VRMC with length n and dimension k .

It is nondegenerate if

Supp(C) = Fqn

Effettive length

dim(Supp(C))
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Rank-nondegenerate codes

C ≤ (Fqm)n VRMC

TFAE
• C rank-nondegenerate;
• for every A ∈ GLn(q), the code CA is nondegenerate w.r.t. the

Hamming metric;
• The Fq-span of the columns of any generator matrix of G has

dimension n over Fq;
• d(C⊥) ≥ 2.

We can isometrically embed a degenerate code in a smaller-length
space.
For C nondegenerate, it holds n ≤ km (JP).
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Projective systems (q-analogue)
R
[n, k , d]qm/q system

U ≤ (Fqm)k

Fq-space, dimFq(U) = n such that

⟨U⟩Fqm = (Fqm)k

and

d = n −max{dimFq(U ∩ H) : H ≤ (Fqm)k , Fqm − hyperplane}

i.e

d = min{dimFq(U + H) : H ≤ (Fqm)k , Fqm − hyperplane} −m(k − 1)
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Equivalent projective systems

U,V , [n, k , d]qm/q systems

Equivalent
if there is a Fqm -isomorphism ϕ : (Fqm)k → (Fqm)k sending U to V
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Standard equation

U, [n, k , d]qm/q system.

Call Λr the set of all r-dimensional subspaces of (Fqm)k over Fqm

∑
H∈Λr

|H ∩ (U \ {0})| = (qn − 1)
[
k − 1
r − 1

]
qm
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Codes and systems

Set of equivalence classes of [n, k , d]qm/q nondegenerate codes:
C[n, k , d]qm/q

Set of equivalence classes of [n, k , d]qm/q systems: U[n, k , d]qm/q
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From codes to systems

We define a map

Φ : C[n, k , d]qm/q → U[n, k , d]qm/q

in this way:
• take [C] ∈ C[n, k , d]qm/q

• let G be a generator matrix for C
• Φ([C]): equivalence class of the Fq-span of the columns of G.
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From systems to codes

We define a map

Ψ : U[n, k , d]qm/q → C[n, k , d]qm/q

in this way:
• take [U] ∈ U[n, k , d]qm/q

• fix a basis {g1, ..., gn} for U;
• let G be the matrix whose columns are g1, ..., gn

• Φ([U]): equivalence class of the code generated by G.
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Recall from the basics

For v ∈ (Fqm)n, v = (v1, . . . , vn), vi ∈ Fqm , 1 ≤ i ≤ n.

r(v) = dimFq(⟨v1, . . . , vn⟩)

C ≤ (Fqm)n

• C , 0:
dmin(C) = min{r(v) : v ∈ C , v , 0}

• C = 0:
dmin(C) = dmin(0) = n + 1.
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Recall from the basics

Note that

dmin(C) ≤ dH(C).

For v ∈ (Fqm)n, v = (v1, . . . , vn), vi ∈ Fqm , 1 ≤ i ≤ n.

r(v) = min{wH(vA) : A ∈ GLn(q)}

21 / 63



Bases and dimensions

Take a finite-dimensional vector space V over Fq.
Let U,W ≤ V ;

B := {bases of U}

max{|B ∩W | : B ∈ B} = dim(U ∩W).
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Again on the rank

C [n, k ]qm/q nondegenerate code, with generator matrix G. Let
u ∈ (Fqm)k a nonzero vector.

If U is the [n, k ]qm/q system generated by the columns of G over Fq

r(uG) = n − dimFq(U ∩ ⟨u⟩
⊥).
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Back and forth

R
Φ,Ψ are well-defined maps and they’re one the inverse of the
other.

There’s then a bijection between C[n, k , d]qm/q and U[n, k , d]qm/q
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Minimum distance

C [n, k , d]qm/q code:

d ≥ dimFq(supp(C)) −m(k − 1)
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Maximum rank

C [n, k ]qm/q nondegenerate code:

maxr(C) = min{n,m}

Ravagnani
C [n, k ]qm/q code; maxr(C) = k . If m ≥ n then C has a basis given
by vectors with all components in Fq.
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Generalized weights

C ≤ (Fqm)n VRMC.

v5 - Randrianarisoa

wi(C) = min{dim(A) : A ≤ (Fqm)n, Frobenius closed dimFqm (C∩A) ≥ i}

for i = 1, ..., dimFqm (C) = k .
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Generalized weights

Randrianarisoa
C: [n, k , d]qm/q nondegenerate code and
U: [n, k , d]qm/q system associated to the code.

For any i = 1, ..., dimFqm (C) = k

wi(C) = n −max{dimFq(U ∩ H) : H ≤ (Fqm)k ,Fqm − subspace,

codim(H) = i}

= min{dimFq(U + H) : H ≤ (Fqm)k ,Fqm − subspace,

codim(H) = i} −m(k − i)
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Simplex RMC

C [mk , k ]qm/q code with k ≥ 2 and generator matrix G.

TFAE
• C nondegenerate;
• colspFq(G) = (Fqm)k ;
• C 1-weight code, dmin(C) = m;
• dmin(C⊥) > 1;
• dmin(C⊥) = 2;
• C linearly equivalent to a code with generator matrix

G′ = (Ik |αIk |...|αm−1Ik )

α ∈ Fqm with Fqm = Fq(α).
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1-weight codes

C [n, k , d]qm/q one-weight code with k ≥ 2.

• effective length: km;
• d = m.

Isometry:
[km, k ,m]qm/q simplex code.
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Linear set

Lunardon
U: [n, k ]qm/q system.

Fq-linear set in PG(k − 1, q) of rank n associated to U:

LU = {⟨u⟩Fqm : u ∈ U \ {0}}

(⟨u⟩Fqm projective point corresponding to u).
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Linear set

V ≤ (Fqm)k , Fqm -subspace.

Λ = PG(V ,Fqm)

Weight of Λ in LU

WU(Λ) = dimFq(U ∩ V).
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Scattered linear sets

Blokhuis-Lavrauw
U: [n, k ]qm/q system.

|LU | ≤
qn − 1
q − 1

= 1 + q + ...+ qn−1

Scattered
When equality⇔ wU(P) = 1 for all P ∈ LU.
Maximum: biggest possible rank.
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Link with the Hamming metric

ABNR
U: [n, k ]qm/q system.

∑
P∈PG(k−1,qm)

qwU(P) − 1
q − 1

=
qn − 1
q − 1

.
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Link with the Hamming metric

Sheekey - ABNR
U: [n, k ]qm/q system.
P ∈ PG(k − 1, qm)

mU(P) :=
qwU(P) − 1

q − 1

∑
P∈PG(k−1,qm)

mU(P) =
qn − 1
q − 1

.
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Projective systems and linear systems

U(n, k)qm/q: [n, k ]qm/q systems
P(n, k)qm : [n, k ]qm projective systems

U(n, k)qm/q → P((qn − 1)/(q − 1), k)qm

U 7→ (LU,mU)

Multiset LU, mU multiplicity function.

The map is compatible with the equivalence classes of these
objects.
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Projective systems and linear systems

U[n, k ]qm/q: equivalence classes of [n, k ]qm/q systems
P[n, k ]qm : equivalence classes of [n, k ]qm projective systems

ExtH : U[n, k ]qm/q → P[(qn − 1)/(q − 1), k ]qm
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Associated Hamming Code

ExtH : U[n, k , d]qm/q → P[(qn − 1)/(q − 1), k , (qn − qn−d)/(q − 1)]qm

C nondegenerate [n, k , d]qm/q VRMC.
Associated Hamming Code: any code in (ΨH ◦ ExtH ◦ Φ)([C]).
Parameters:

[(qn − 1)/(q − 1), k , (qn − qn−d)/(q − 1)]qm
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Associated Hamming Code

C nondegenerate [n, k , d]qm/q VRMC; rank-weight distribution
{Ai(C)};

AH
i (CH) =

 Ai(C) if j = qn−qn−i

q−1
0 otherwise
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Associated Hamming Code

C nondegenerate [n, k , d]qm/q VRMC; generalized weights {wi(C)};

wH
i (C

H) =
qn − qn−wi(C)

q − 1
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Minimal codeword

C: [n, k , d]qm/q VRMC;

Minimal
c ∈ C: if there is c′ with supp(c′) ⊆ supp(c) it means that the two
codewords are one multiple of the other.
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Linear cutting blocking set

U [n, k ]qm/q system is a linear cutting blocking set if for each H
Fqm−hyperplane ⟨H ∩ U⟩Fqm = H.

Idea: the associated linear set LU cutting blocking set in
PG(k − 1, qm).
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Characterizing linear cutting blocking sets

U: [n, k ]qm/q system. Linear cutting blocking set if and only if for
each H,H′ Fqm−hyperplanes in (Fqm)k

H ∩ U ⊆ H′ ∩ U ⇒ H = H′

U [n, k ]qm/q linear cutting blocking set, for each H Fqm−hyperplane
in (Fqm)k

|H ∩ U| ≥ qk−1
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A correspondence...

C [n, k ]qm/q nondegenerate code and U its associated system. Let
G be a generator matrix for C.
u, v ∈ (Fqm)k \ {0}

supp(uG) ⊆ supp(vG)⇔ (U ∩ ⟨u⟩⊥) ⊇ (U ∩ ⟨v⟩⊥)
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... that we already saw...

Φ : C[n, k , d]qm/q → U[n, k , d]qm/q

Ψ : U[n, k , d]qm/q → C[n, k , d]qm/q

Φ,Ψ are well-defined maps and they’re one the inverse of the
other.

There’s then a bijection between C[n, k , d]qm/q and U[n, k , d]qm/q
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... revisited

Φ,Ψ are well-defined maps and they’re one the inverse of the
other.

They induce a bijection between minimal RMC and linear cutting
blocking sets.
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New minimal codes

C [n, k ]qm/q minimal code; G generator matrix, u ∈ (Fqm)k

The [n + 1, k ]qm/q code C whose generator matrix is (G|uT ) is
minimal.
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New minimal codes

C [n, k ]qm/q minimal code.

Then

∀c ∈ C r(c) ≤ dimFq(supp(C)) − k + 1

maxr(C) ≤ dimFq(supp(C)) − k + 1 ≤ n − k + 1

k ≥ 2

n ≥ k + m − 1
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Connecting with Hamming minimal codes

C [n, k ]qm/q code.

Hamming minimal⇒ rank-minimal
⇍

C [n, k ]qm/q nondegenerate code.

C rank-minimal⇔ CH Hamming minimal
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Minimality condition

C [n, k ]qm/q code.

C is minimal if and only if, for each c, c′ ∈ C linearly independent, it
holds ∑

λ∈Fqm \{0}

q−r(c+λc′) , (qm − 1)q−r(c) − q−r(c′) + 1

50 / 63



Ashikmin-Barg condition

Hamming case
C [n, k ]qm code.

C minimal⇔ wmax
wmin
< qm

qm−1

In the rank-metric
The condition becomes trivial.
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Some minimal codes

C [km, k ,m]qm/q simplex code.

⇒ C is minimal

A C nondegenerate [n, k ]qm/q code with n ≥ (k − 1)m + 1 is
minimal
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k = 3

A C nondegenerate [n, 3]qm/q code with n ≥ m + 2 is minimal and
with U as associated [n, 3]qm/q system .

LU scattered⇒ C minimal

Blokhuis–Lavrauw
If U [n, k ]qm/q system with LU scattered then

n ≤
km
2

Maximum scattered linear sets: equality.
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Scattered linear sets

km even number - Csajbók-Marino-Polverino-Zullo
There’s a system U with parameters [km/2, k ]qm/q s.t. LU scattered

km odd number
Still much to do
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Scattered linear sets

Blockhuis-Lavrauw
k ,m positive integers, q prime power. The there exist a [ab , k ]qm/q

system s.t. LU scattered every time a | k , GCD(a,m) = 1

ab <
{ km−m+3

2 q = 2, a = 1
km−m+3+a

2 otherwise

Puncturing
U with parameters [n, k ]qm/q s.t. LU scattered. If n > k there is a
[n − 1, k ]qm/q system V ⊆ U such that also LV is scattered.
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What happens then in dimension 3

m , 3, 5 mod 6, m ≥ 4.

There is then a nondegenerate minimal [m + 2, 3]qm/q code.
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Existence of minimal codes

m, n, k positive integers, n ≥ k ≥ 2. If the value

(qmn − 1)(qm(n−1) − 1)

(qmk − 1)(qm(k−1) − 1)
−

1
2

m∑
i=2

1
qm − 1

[
m
i

]
q

i−1∏
j=0

(qn−qj)

(
qmi − 1
qm − 1

− 1
)

is positive, then there exists a minimal code with parameters
[n, k ]qm/q.

For each m, k ≥ 2 there exists a minimal [2k + m − 2, k ]qm/q code.
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Linearity index

U [n, k ]qm/q system

Linearity index:

l(U) := max{dimFqm (H) : H ⊆ (Fqm)k ,Fqm − subspace ,H ⊆ U}

Invariant for equivalent systems.
Related to the generalized weights
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Linearity index of a code

C [n, k ]qm/q nondegenerate code and U an [n, k ]qm/q associated
system.

l(U) = k −min{i : wi(C) = n − (k − i)m}
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Linearity index and codes

C [n, k ]qm/q nondegenerate code and l is its linearity index.

wi+1(C) − wi(C) = m ⇔ i ≥ k − l(C)

C [n, k ]qm/q nondegenerate code

l(C) ≥ n − k(m − 1)
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Linearity index and codes

U linear cutting blocking set with parameters [n, k ]qm/q and
suppose there is T ≤ (Fqm)k a Fqm -subspace with dimFqm (T) = l,
T ⊆ U. Then U/T is isomorphic to a linear cutting blocking set of
parameters [n − lm, k − l]qm/q.

U linear cutting blocking set with parameters [n, k ]qm/q with
linearity index l. Suppose k − l ≥ 2:

n − k ≥ (l + 1)(m − 1)

Let C be the nondegenerate [n, k ]qm/q code associated to U. For
each 1 ≤ i ≤ k − ⌈n−k+1

m−1 ⌉ − 1, wi(C) > n − im.
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Linearity index and codes

C nondegenerate [(k − 1)m, k ]qm/q code with l(C) = l.

TFAE
• C minimal
• l < k − 2
• w2(C) > m

k ≥ 3 integer. There is a nondegenerate [(k − 1)m, k ]qm/q code iff
m ≥ 3
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Thank you for your attention!
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