THREE PATHS TO THE RANK METRIC

Finite geometry

M. Ceria Politecnico di Bari

FINITE PROJECTIVE SPACES

Let us consider a prime power $q = p^h$ and denote by \mathbb{F}_q the finite field with size q.

Finite projective space PG(n, q) (a.k.a. PG(V)):

let V := V(n + 1, q) be a n + 1-dimensional vector space over \mathbb{F}_q . For $0 \le k \le n - 1$ all k-dimensional projective subspaces of PG(n, q) are the (k + 1)-vector subspaces of V.

- 0-projective subspace: $point \rightarrow 1$ vector subspace;
- 1-projective subspace: $line \rightarrow 2$ vector subspace;
- 2-projective subspace: *plane* → 3- vector subspace;
- 3-projective subspace: *solid* → 4- vector subspace;
- and so on.

Collineations, semilinear maps, projectivities

COLLINEATION

If *V*, *W* are equidimensional \mathbb{F}_q vector spaces, a **collineation** between PG(V) and PG(W) is a bijection between their points with the property of preserving incidence.

Let
$$\sigma \in Aut(\mathbb{F}_q)$$
 and $A \in GL_{n+1}(q)$

Semilinear isomorphism

$$F_{\sigma,A}: V(n+1,q) \rightarrow V(n+1,q)$$

such that, for $\overline{\mathbf{x}} = (x_1, ..., x_n)$:

$$F_{\sigma,A}(\overline{\mathbf{x}}) = \sigma(\overline{\mathbf{x}})A_T$$

where $\sigma(\overline{\mathbf{x}}) = (\sigma(x_1), ..., \sigma(x_n))$ $F_{\sigma,A} \in \Gamma L(n+1, q)$

COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

Semilinear isomorphism

$$F_{\sigma,A}: V(n+1,q) \rightarrow V(n+1,q)$$

such that, for $\overline{\mathbf{x}} = (x_1, ..., x_n)$:

$$F_{\sigma,A}(\overline{\mathbf{x}}) = \sigma(\overline{\mathbf{x}})A_T$$

where $\sigma(\overline{\mathbf{x}}) = (\sigma(x_1), ..., \sigma(x_n))$

It defines a bijection among the points of PG(n, q) which preserves incidence: **projective semilinear map**.

Collineations, semilinear maps, projectivities

Semilinear isomorphism

$$F_{\sigma,A} : V(n + 1, q) \rightarrow V(n + 1, q)$$

such that, for $\overline{\mathbf{x}} = (x_1, ..., x_n)$:
$$F_{\sigma,A}(\overline{\mathbf{x}}) = \sigma(\overline{\mathbf{x}})A_T$$

where $\sigma(\overline{\mathbf{x}}) = (\sigma(x_1), ..., \sigma(x_n))$

For $\sigma = Id$ we have a projectivity

COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

For $\sigma = Id$ we have a projectivity

 $P\Gamma L(n + 1, q) = \{ \text{ all projective semilinear maps} \}$ $PGL(n + 1, q) = \{ \text{ all projectivities} \}$

Collineations, semilinear maps, projectivities

Each automorphism $\sigma \in Aut(\mathbb{F}_q)$ induces a collineation of PG(n, q)

 $F_{\sigma,A}$, $G_{\sigma',B}$ induce the same collineation if and only if they differ by the multiplication by a scalar matrix:

$$\sigma = \sigma' \quad \mathbf{A} = \mu \mathbf{B}, \, \mu \in \mathbb{F}_q^*$$

COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

 $F_{\sigma,A}$, $G_{\sigma',B}$ induce the same collineation if and only if they differ by the multiplication by a scalar matrix:

$$\sigma = \sigma' \quad \mathsf{A} = \mu\mathsf{B}, \, \mu \in \mathbb{F}_q^*$$

$$P\Gamma L(n + 1, q) = \Gamma L_{n+1}(q) / Z(\Gamma L_{n+1}(q))$$
$$PGL(n + 1, q) = GL_{n+1}(q) / Z(GL_{n+1}(q))$$

where

,

$$Z(\Gamma L_{n+1}(q)) = Z(GL_{n+1}(q)) = \{\lambda I : \lambda \in \mathbb{F}_q^*\} \simeq \mathbb{F}_q^*$$

Collineations, reciprocities, polarities

DUAL OF PG(V)

 $PG(n, q)^* := PG(V^*)$: points are hyperplanes of PG(n, q) and so on; incidence is reversed.

Reciprocity - Polarity

Reciprocity: a collineation ρ between PG(*n*, *q*) and PG(*n*, *q*)^{*}. If it has order 2 it is a **polarity**.

Техтвоок

ABNR

Gianira N. Alfarano, Martino Borello, Alessandro Neri, Alberto Ravagnani

Linear cutting blocking sets and minimal codes in the rank metric Journal of Combinatorial Theory, Series A 192 (2022): 105658.

SUPPORT - VRMC

 $C \leq (\mathbb{F}_{q^m})^n \text{ VRMC}; \Gamma = \{\gamma_1, \dots, \gamma_m\} \text{ a basis of } \mathbb{F}_{q^m} \text{ over } \mathbb{F}_q:$ $supp(\overline{\mathbf{v}}) = colsp(\Gamma(\overline{\mathbf{v}})) \leq (\mathbb{F}_q)^n$

is the (rank) support of $\overline{\mathbf{v}} \in C$, and it is a \mathbb{F}_q -linear space.

Rank weight: $r(\overline{\mathbf{v}}) = dim_{\mathbb{F}_a}(supp(\overline{\mathbf{v}}))$

 $D \leq C \leq (\mathbb{F}_{q^m})^n$

$$supp(D) = \sum_{v \in D} supp(\overline{\mathbf{v}}) \leq (\mathbb{F}_q)^n.$$

Non-degenerate code

 $C \leq (\mathbb{F}_{q^m})^n$ VRMC with length *n* and dimension *k*.

It is nondegenerate if

 $\operatorname{Supp}(C) = \mathbb{F}_{q^n}$

EFFETTIVE LENGTH

 $\dim(\operatorname{Supp}(C))$

Rank-nondegenerate codes

 $C \leq (\mathbb{F}_{q^m})^n \text{ VRMC}$

TFAE

- C rank-nondegenerate;
- for every A ∈ GL_n(q), the code CA is nondegenerate w.r.t. the Hamming metric;
- The F_q-span of the columns of any generator matrix of G has dimension n over F_q;
- $d(C^{\perp}) \geq 2$.

We can isometrically embed a degenerate code in a smaller-length space.

For *C* nondegenerate, it holds $n \leq km$ (JP).

PROJECTIVE SYSTEMS (*q*-ANALOGUE)

 $\frac{\mathbf{R}}{[n,k,d]_{q^m/q}}$ system

$$U \leq (\mathbb{F}_{q^m})^k$$

 \mathbb{F}_q -space, dim $_{\mathbb{F}_q}(U) = n$ such that

$$\langle U
angle_{\mathbb{F}_{q^m}} = (\mathbb{F}_{q^m})^k$$

and

$$d = n - \max\{\dim_{\mathbb{F}_q}(U \cap H) : H \leq (\mathbb{F}_{q^m})^k, \mathbb{F}_{q^m} - \text{hyperplane}\}$$

I.E

$$d = \min\{\dim_{\mathbb{F}_q}(U+H) : H \le (\mathbb{F}_{q^m})^k, \mathbb{F}_{q^m} - \text{hyperplane}\} - m(k-1)$$

Equivalent projective systems

 $U, V, [n, k, d]_{q^m/q}$ systems

Equivalent

if there is a \mathbb{F}_{q^m} -isomorphism $\phi : (\mathbb{F}_{q^m})^k \to (\mathbb{F}_{q^m})^k$ sending U to V

STANDARD EQUATION

U, $[n, k, d]_{q^m/q}$ system.

Call Λ_r the set of all *r*-dimensional subspaces of $(\mathbb{F}_{q^m})^k$ over \mathbb{F}_{q^m}

$$\sum_{H \in \Lambda_r} |H \cap (U \setminus \{0\})| = (q^n - 1) {k-1 \brack r-1}_{q^m}$$

CODES AND SYSTEMS

Set of equivalence classes of $[n, k, d]_{q^m/q}$ nondegenerate codes: $C[n, k, d]_{q^m/q}$

Set of equivalence classes of $[n, k, d]_{q^m/q}$ systems: $U[n, k, d]_{q^m/q}$

FROM CODES TO SYSTEMS

We define a map

$$\Phi: C[n,k,d]_{q^m/q} \to U[n,k,d]_{q^m/q}$$

in this way:

- take $[C] \in C[n, k, d]_{q^m/q}$
- let G be a generator matrix for C
- $\Phi([C])$: equivalence class of the \mathbb{F}_q -span of the columns of G.

FROM SYSTEMS TO CODES

We define a map

$$\Psi: U[n,k,d]_{q^m/q} \to C[n,k,d]_{q^m/q}$$

in this way:

- take $[U] \in U[n, k, d]_{q^m/q}$
- fix a basis {*g*₁, ..., *g_n*} for *U*;
- let G be the matrix whose columns are $g_1, ..., g_n$
- $\Phi([U])$: equivalence class of the code generated by *G*.

Recall from the basics

For
$$\overline{\mathbf{v}} \in (\mathbb{F}_{q^m})^n$$
, $\overline{\mathbf{v}} = (v_1, \dots, v_n)$, $v_i \in \mathbb{F}_{q^m}$, $1 \le i \le n$.
$$r(\overline{\mathbf{v}}) = \dim_{\mathbb{F}_q}(\langle v_1, \dots, v_n \rangle)$$

$$C \leq (\mathbb{F}_{q^m})^n$$

• $C \neq 0$:

$$d_{min}(C) = \min\{r(\overline{\mathbf{v}}) : \overline{\mathbf{v}} \in C, \overline{\mathbf{v}} \neq \overline{\mathbf{0}}\}$$

• $C = 0$:

$$d_{min}(C) = d_{min}(0) = n + 1.$$

Recall from the basics

NOTE THAT

 $d_{min}(C) \leq d^{H}(C).$

For
$$\overline{\mathbf{v}} \in (\mathbb{F}_{q^m})^n$$
, $\overline{\mathbf{v}} = (v_1, \dots, v_n)$, $v_i \in \mathbb{F}_{q^m}$, $1 \le i \le n$.
$$r(\overline{\mathbf{v}}) = \min\{w^H(\overline{\mathbf{v}}A) : A \in GL_n(q)\}$$

BASES AND DIMENSIONS

Take a finite-dimensional vector space V over \mathbb{F}_q . Let $U, W \leq V$;

 $\mathcal{B} := \{ \text{bases of } U \}$

 $\max\{|B \cap W|: B \in \mathcal{B}\} = \dim(U \cap W).$

AGAIN ON THE RANK

 $C[n,k]_{q^m/q}$ nondegenerate code, with generator matrix G. Let $\overline{\mathbf{u}} \in (\mathbb{F}_{q^m})^k$ a nonzero vector.

If *U* is the $[n, k]_{q^m/q}$ system generated by the columns of *G* over \mathbb{F}_q

$$r(\overline{\mathbf{u}}G) = n - \dim_{\mathbb{F}_q}(U \cap \langle \overline{\mathbf{u}} \rangle^{\perp}).$$

BACK AND FORTH

R

 Φ, Ψ are well-defined maps and they're one the inverse of the other.

There's then a bijection between $C[n, k, d]_{q^m/q}$ and $U[n, k, d]_{q^m/q}$

MINIMUM DISTANCE

 $C[n,k,d]_{q^m/q}$ code:

 $d \geq \dim_{\mathbb{F}_q}(supp(C)) - m(k-1)$

MAXIMUM RANK

 $C[n,k]_{q^m/q}$ nondegenerate code:

 $maxr(C) = min\{n, m\}$

RAVAGNANI

 $C[n,k]_{q^m/q}$ code; maxr(C) = k. If $m \ge n$ then *C* has a basis given by vectors with all components in \mathbb{F}_q .

GENERALIZED WEIGHTS

 $C \leq (\mathbb{F}_{q^m})^n$ VRMC. v5 - Randrianarisoa

$$w_i(C) = \min\{\dim(A) : A \le (\mathbb{F}_{q^m})^n, \text{ Frobenius closed } \dim_{\mathbb{F}_{q^m}}(C \cap A) \ge i\}$$

for $i = 1, ..., \dim_{\mathbb{F}_{q^m}}(C) = k$.

GENERALIZED WEIGHTS

RANDRIANARISOA

C: $[n, k, d]_{q^m/q}$ nondegenerate code and U: $[n, k, d]_{q^m/q}$ system associated to the code.

For any
$$i = 1, ..., \dim_{\mathbb{F}_{q^m}}(C) = k$$

$$\begin{split} w_i(C) &= n - \max\{\dim_{\mathbb{F}_q}(U \cap H) : H \leq (\mathbb{F}_{q^m})^k, \mathbb{F}_{q^m} - subspace, \\ codim(H) &= i\} \\ &= \min\{\dim_{\mathbb{F}_q}(U + H) : H \leq (\mathbb{F}_{q^m})^k, \mathbb{F}_{q^m} - subspace, \\ codim(H) &= i\} - m(k - i) \end{split}$$

SIMPLEX RMC

 $C[mk,k]_{q^m/q}$ code with $k \ge 2$ and generator matrix G.

TFAE

- C nondegenerate;
- $colsp_{\mathbb{F}_q}(G) = (\mathbb{F}_{q^m})^k;$
- C 1-weight code, $d_{min}(C) = m$;
- $d_{min}(C^{\perp}) > 1;$
- $d_{min}(C^{\perp}) = 2;$
- C linearly equivalent to a code with generator matrix

$$G' = (I_k |\alpha I_k| \dots |\alpha^{m-1} I_k)$$

 $\alpha \in \mathbb{F}_{q^m}$ with $\mathbb{F}_{q^m} = \mathbb{F}_q(\alpha)$.

1-WEIGHT CODES

 $C[n, k, d]_{q^m/q}$ one-weight code with $k \ge 2$.

- effective length: km;
- *d* = *m*.

Isometry:

 $[km, k, m]_{q^m/q}$ simplex code.

LINEAR SET

LUNARDON U: $[n, k]_{q^m/q}$ system.

 \mathbb{F}_q -linear set in PG(k - 1, q) of rank *n* associated to *U*:

$$L_U = \{ \langle \overline{\mathbf{u}} \rangle_{\mathbb{F}_{q^m}} : \overline{\mathbf{u}} \in U \setminus \{ \overline{\mathbf{0}} \} \}$$

 $(\langle \overline{\mathbf{u}} \rangle_{\mathbb{F}_{a^m}} \text{ projective point corresponding to } \overline{\mathbf{u}}).$

LINEAR SET

$$V \leq (\mathbb{F}_{q^m})^k, \mathbb{F}_{q^m}$$
-subspace.

$$\Lambda = \mathrm{PG}(V, \mathbb{F}_{q^m})$$

Weight of Λ in L_U

 $W_U(\Lambda) = \dim_{\mathbb{F}_q}(U \cap V).$

SCATTERED LINEAR SETS

BLOKHUIS-LAVRAUW U: $[n, k]_{q^m/q}$ system.

$$|L_U| \le \frac{q^n - 1}{q - 1} = 1 + q + ... + q^{n-1}$$

SCATTERED When equality $\Leftrightarrow w_U(P) = 1$ for all $P \in L_U$. Maximum: biggest possible rank.

LINK WITH THE HAMMING METRIC

ABNR U: $[n, k]_{q^m/q}$ system.

$$\sum_{P \in \mathbf{PG}(k-1,q^m)} \frac{q^{w_U(P)} - 1}{q-1} = \frac{q^n - 1}{q-1}.$$

LINK WITH THE HAMMING METRIC

SHEEKEY - ABNR U: $[n, k]_{q^m/q}$ system. $P \in PG(k - 1, q^m)$

$$m{m}_U(P):=rac{q^{w_U(P)}-1}{q-1}$$

$$\sum_{P\in \mathbf{PG}(k-1,q^m)}m_U(P)=\frac{q^n-1}{q-1}.$$

PROJECTIVE SYSTEMS AND LINEAR SYSTEMS

 $U(n,k)_{q^m/q}$: $[n,k]_{q^m/q}$ systems $P(n,k)_{q^m}$: $[n,k]_{q^m}$ projective systems

$$U(n,k)_{q^m/q} \to P((q^n-1)/(q-1),k)_{q^m}$$
$$U \mapsto (L_U, m_U)$$

Multiset L_U , m_U multiplicity function.

The map is compatible with the equivalence classes of these objects.

PROJECTIVE SYSTEMS AND LINEAR SYSTEMS

 $U[n, k]_{q^m/q}$: equivalence classes of $[n, k]_{q^m/q}$ systems $P[n, k]_{q^m}$: equivalence classes of $[n, k]_{q^m}$ projective systems

$$Ext^H$$
: $U[n,k]_{q^m/q} \rightarrow P[(q^n-1)/(q-1),k]_{q^m}$

Associated Hamming Code

$$Ext^{H}: U[n,k,d]_{q^{m}/q} \to P[(q^{n}-1)/(q-1),k,(q^{n}-q^{n-d})/(q-1)]_{q^{m}}$$

C nondegenerate $[n, k, d]_{q^m/q}$ VRMC. Associated Hamming Code: any code in $(\Psi^H \circ Ext^H \circ \Phi)([C])$. Parameters:

$$[(q^n - 1)/(q - 1), k, (q^n - q^{n-d})/(q - 1)]_{q^m}$$

Associated Hamming Code

C nondegenerate $[n, k, d]_{q^m/q}$ VRMC; rank-weight distribution $\{A_i(C)\}$;

$$A_i^H(C^H) = \begin{cases} A_i(C) & \text{if } j = \frac{q^n - q^{n-i}}{q-1} \\ 0 & \text{otherwise} \end{cases}$$

Associated Hamming Code

C nondegenerate $[n, k, d]_{q^m/q}$ VRMC; generalized weights $\{w_i(C)\}$;

$$w^H_i(C^H)=rac{q^n-q^{n-w_i(C)}}{q-1}$$

MINIMAL CODEWORD

C: $[n, k, d]_{q^m/q}$ VRMC;

MINIMAL

 $\overline{\mathbf{c}} \in C$: if there is $\overline{\mathbf{c}}'$ with $supp(\overline{\mathbf{c}}') \subseteq supp(\overline{\mathbf{c}})$ it means that the two codewords are one multiple of the other.

LINEAR CUTTING BLOCKING SET

 $U[n, k]_{q^m/q}$ system is a **linear cutting blocking set** if for each H \mathbb{F}_{q^m} -hyperplane $\langle H \cap U \rangle_{\mathbb{F}_{q^m}} = H$.

Idea: the associated linear set L_U cutting blocking set in $PG(k - 1, q^m)$.

CHARACTERIZING LINEAR CUTTING BLOCKING SETS

U: $[n, k]_{q^m/q}$ system. Linear cutting blocking set if and only if for each *H*, *H'* \mathbb{F}_{q^m} -hyperplanes in $(\mathbb{F}_{q^m})^k$

 $H \cap U \subseteq H' \cap U \Rightarrow H = H'$

 $U[n,k]_{q^m/q}$ linear cutting blocking set, for each $H \mathbb{F}_{q^m}$ -hyperplane in $(\mathbb{F}_{q^m})^k$ $|H \cap U| \ge q^{k-1}$

A CORRESPONDENCE...

 $C[n,k]_{q^m/q}$ nondegenerate code and U its associated system. Let G be a generator matrix for C. $\overline{\mathbf{u}}, \overline{\mathbf{v}} \in (\mathbb{F}_{q^m})^k \setminus \{\overline{\mathbf{0}}\}$

 $supp(\overline{\mathbf{u}}G) \subseteq supp(\overline{\mathbf{v}}G) \Leftrightarrow (U \cap \langle \overline{\mathbf{u}} \rangle^{\perp}) \supseteq (U \cap \langle \overline{\mathbf{v}} \rangle^{\perp})$

... THAT WE ALREADY SAW...

$$\Phi: C[n, k, d]_{q^m/q} \to U[n, k, d]_{q^m/q}$$
$$\Psi: U[n, k, d]_{q^m/q} \to C[n, k, d]_{q^m/q}$$

 Φ, Ψ are well-defined maps and they're one the inverse of the other.

There's then a bijection between $C[n, k, d]_{q^m/q}$ and $U[n, k, d]_{q^m/q}$

... REVISITED

 Φ, Ψ are well-defined maps and they're one the inverse of the other.

They induce a bijection between minimal RMC and linear cutting blocking sets.

New minimal codes

 $C[n,k]_{q^m/q}$ minimal code; G generator matrix, $\overline{\mathbf{u}} \in (\mathbb{F}_{q^m})^k$

The $[n + 1, k]_{q^m/q}$ code \overline{C} whose generator matrix is $(G|\overline{\mathbf{u}}_T)$ is minimal.

New minimal codes

 $C[n,k]_{q^m/q}$ minimal code.

THEN

$$\begin{aligned} \forall \overline{\mathbf{c}} \in C \quad r(\overline{\mathbf{c}}) \leq \dim_{\mathbb{F}_q}(supp(C)) - k + 1 \\ maxr(C) \leq \dim_{\mathbb{F}_q}(supp(C)) - k + 1 \leq n - k + 1 \end{aligned}$$

 $k \ge 2$

$$n \ge k + m - 1$$

Connecting with Hamming minimal codes

 $C[n,k]_{q^m/q}$ code.

Hamming minimal \Rightarrow rank-minimal

∉

 $C[n,k]_{q^m/q}$ nondegenerate code.

C rank-minimal $\Leftrightarrow C^H$ Hamming minimal

MINIMALITY CONDITION

 $C[n,k]_{q^m/q}$ code.

C is minimal if and only if, for each $\overline{c}, \overline{c}' \in C$ linearly independent, it holds

$$\sum_{\lambda \in \mathbb{F}_{q^m} \setminus \{0\}} q^{-r(\overline{\mathbf{c}} + \lambda \overline{\mathbf{c}}')} \neq (q^m - 1)q^{-r(\overline{\mathbf{c}})} - q^{-r(\overline{\mathbf{c}}')} + 1$$

ASHIKMIN-BARG CONDITION

HAMMING CASE $C[n, k]_{q^m}$ code.

$$C \text{ minimal} \Leftrightarrow \frac{w_{\text{max}}}{w_{\text{min}}} < \frac{q^m}{q^{m-1}}$$

IN THE RANK-METRIC The condition becomes trivial.

Some minimal codes

C $[km, k, m]_{q^m/q}$ simplex code.

 $\Rightarrow C$ is minimal

A C nondegenerate $[n, k]_{q^m/q}$ code with $n \ge (k - 1)m + 1$ is minimal

A *C* nondegenerate $[n, 3]_{q^m/q}$ code with $n \ge m + 2$ is minimal and with *U* as associated $[n, 3]_{q^m/q}$ system.

 L_U scattered $\Rightarrow C$ minimal

BLOKHUIS–LAVRAUW If $U[n, k]_{q^m/q}$ system with L_U scattered then

$$n \leq \frac{km}{2}$$

Maximum scattered linear sets: equality.

Scattered linear sets

km even number - Csajbók-Marino-Polverino-Zullo

There's a system U with parameters $[km/2, k]_{a^m/a}$ s.t. L_U scattered

km odd NUMBER Still much to do

SCATTERED LINEAR SETS

BLOCKHUIS-LAVRAUW

k, *m* positive integers, *q* prime power. The there exist a $[ab, k]_{q^m/q}$ system s.t. L_U scattered every time $a \mid k$, GCD(a, m) = 1

$$ab < \begin{cases} \frac{km-m+3}{2} & q = 2, a = 1\\ \frac{km-m+3+a}{2} & \text{otherwise} \end{cases}$$

PUNCTURING

U with parameters $[n, k]_{q^m/q}$ s.t. L_U scattered. If n > k there is a $[n - 1, k]_{q^m/q}$ system $V \subseteq U$ such that also L_V is scattered.

WHAT HAPPENS THEN IN DIMENSION 3

 $m \neq 3,5 \mod 6, m \ge 4.$

There is then a nondegenerate minimal $[m + 2, 3]_{q^m/q}$ code.

EXISTENCE OF MINIMAL CODES

m, n, k positive integers, $n \ge k \ge 2$. If the value

$$\frac{(q^{mn}-1)(q^{m(n-1)}-1)}{(q^{mk}-1)(q^{m(k-1)}-1)} - \frac{1}{2} \sum_{i=2}^{m} \frac{1}{q^m-1} {m \brack i}_q \prod_{j=0}^{i-1} (q^n-q^j) \left(\frac{q^{mi}-1}{q^m-1}-1\right)$$

is positive, then there exists a minimal code with parameters $[n, k]_{q^m/q}$.

For each $m, k \ge 2$ there exists a minimal $[2k + m - 2, k]_{q^m/q}$ code.

LINEARITY INDEX

 $U[n,k]_{q^m/q}$ system

LINEARITY INDEX:

$$I(U) := \max\{\dim_{\mathbb{F}_{q^m}}(H) : H \subseteq (\mathbb{F}_{q^m})^k, \mathbb{F}_{q^m} - \text{subspace}, H \subseteq U\}$$

Invariant for equivalent systems. Related to the **generalized weights**

LINEARITY INDEX OF A CODE

 $C[n, k]_{q^m/q}$ nondegenerate code and U an $[n, k]_{q^m/q}$ associated system.

$$I(U) = k - \min\{i : w_i(C) = n - (k - i)m\}$$

LINEARITY INDEX AND CODES

 $C[n,k]_{q^m/q}$ nondegenerate code and *I* is its linearity index.

$$w_{i+1}(C) - w_i(C) = m \Leftrightarrow i \ge k - l(C)$$

 $C[n,k]_{q^m/q}$ nondegenerate code

 $l(C) \geq n - k(m-1)$

U linear cutting blocking set with parameters $[n, k]_{q^m/q}$ and suppose there is $T \leq (\mathbb{F}_{q^m})^k$ a \mathbb{F}_{q^m} -subspace with dim $_{\mathbb{F}_{q^m}}(T) = I$, $T \subseteq U$. Then U/T is isomorphic to a linear cutting blocking set of parameters $[n - lm, k - l]_{q^m/q}$.

U linear cutting blocking set with parameters $[n, k]_{q^m/q}$ with linearity index *I*. Suppose $k - l \ge 2$:

 $n-k \geq (l+1)(m-1)$

Let *C* be the nondegenerate $[n, k]_{q^m/q}$ code associated to *U*. For each $1 \le i \le k - \lceil \frac{n-k+1}{m-1} \rceil - 1$, $w_i(C) > n - im$.

LINEARITY INDEX AND CODES

C nondegenerate $[(k-1)m, k]_{q^m/q}$ code with I(C) = I.

TFAE

- C minimal
- *l* < *k* − 2
- $w_2(C) > m$

 $k \ge 3$ integer. There is a nondegenerate $[(k - 1)m, k]_{q^m/q}$ code iff $m \ge 3$

Thank you for your attention!