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FINITE PROJECTIVE SPACES

Let us consider a prime power q = p" and denote by [Fq the finite
field with size q.

FiNiTE PROJECTIVE SPACE PG(n, q) (a.k.A. PG(V)):

let V:= V(n+1,q) be a n+ 1-dimensional vector space over Fg.

For 0 < k < n-1 all k-dimensional projective subspaces of
PG(n, q) are the (k + 1)-vector subspaces of V.

0-projective subspace: point — 1- vector subspace;

1-projective subspace: line — 2- vector subspace;

2-projective subspace: plane — 3- vector subspace;

3-projective subspace: solid — 4- vector subspace;
¢ and so on.
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COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

COLLINEATION

If V, W are equidimensional F; vector spaces, a collineation
between PG(V) and PG(W) is a bijection between their points with
the property of preserving incidence.

Let o € Aut(Fq) and A € GLn+1(Qq)

SEMILINEAR ISOMORPHISM

Fon:V(n+1,9) - V(n+1,q)
such that, for x = (x1, ..., Xp):
Foa(X) = o(X)Ar

where o(X) = (o(X1), ..., 0(Xn))
Fon€TL(n+1,q)
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COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

SEMILINEAR ISOMORPHISM

Fon:V(n+1,9) — V(n+1,9)

such that, for X = (x1, ..., Xp):
Foa(X) = o(X)Ar

where o (X) = (0(x1), ..., o(xp))

It defines a bijection among the points of PG(n, q) which preserves
incidence: projective semilinear map.
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COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

SEMILINEAR ISOMORPHISM

Fon:V(n+1,9) » V(n+1,9)

such that, for X = (x1, ..., Xp):
Foa(X) = o(X)Ar

where o (X) = (0(x1), ..., o(xp))

For o = Id we have a projectivity
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COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

For o = Id we have a projectivity

PrL(n+1,q) = { all projective semilinear maps}
PGL(n+ 1,q) = { all projectivities}
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COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

Each automorphism o € Aut(Fg) induces a collineation of PG(n, q)

F+a,Go g induce the same collineation if and only if they differ by
the multipilcation by a scalar matrix:

oc=0" A=uB, uckF,
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COLLINEATIONS, SEMILINEAR MAPS, PROJECTIVITIES

F+a, G g induce the same collineation if and only if they differ by
the multipilcation by a scalar matrix:

oc=0" A=uB, ucF,

PrL(n+1,q) = TLot1(9)/Z(TLat1(q))
PGL(n+1,q9) = GLn1+1(q)/Z(GL+1(q))

where

Z(MLa11(9)) = Z(GLny1(q)) = (AUl : A € Fy) ~ F
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COLLINEATIONS, RECIPROCITIES, POLARITIES

DuaL or PG(V)

PG(n, q)* := PG(V*): points are hyperplanes of PG(n, q) and so
on; incidence is reversed.

RECIPROCITY - POLARITY

Reciprocity: a collineation p between PG(n, q) and PG(n, q)*.
If it has order 2 it is a polarity.
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SupporT — VRMC

C < (Fgm)" VRMC; I = {y1,...,¥m} a basis of Fgn over Fy:

supp(V) = colsp(I'(V)) < (Fq)"

is the (rank) support of v € C, and it is a Fg-linear space.
Rank weight: r(v) = dimg,(supp(v))
D < C < (Fgm)"

supp(D) = ) supp(¥) < (Fo)".
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NON-DEGENERATE CODE

C < (Fgm)" VRMC with length n and dimension k.

It is nondegenerate if

Supp(C) = Fgn

EFFETTIVE LENGTH

dim(Supp(C))
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RANK-NONDEGENERATE CODES

C < (Fgn)" VRMC

TFAE
¢ (C rank-nondegenerate;
e for every A € GLs(q), the code CA is nondegenerate w.r.t. the
Hamming metric;
® The Fq4-span of the columns of any generator matrix of G has
dimension n over Fg;

e d(Ct) =2

We can isometrically embed a degenerate code in a smaller-length
space.
For C nondegenerate, it holds n < km (JP).
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PROJECTIVE SYSTEMS (Q-ANALOGUE)
R
[n, k, d]gm/q System
U < (Fgm)*
Fq-space, dimg,(U) = n such that
(Uggn = (Fgm)"

and

d = n—max{dimg, (UNH) : H< (Fgm)¥, Fgm — hyperplane}

I.E

d = min{dimz, (U + H) : H < (Fgn), Fgn — hyperplane} — m(k — 1)
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EQUIVALENT PROJECTIVE SYSTEMS

U, V, [n, k,d]gn/q Systems

EQUIVALENT
if there is a Fgm-isomorphism ¢ : (Fqm )X — (Fgm) sending U'to V
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STANDARD EQUATION

U, [n, k,d]qmq System.

Call A, the set of all r-dimensional subspaces of (Fgm) over Fgm

> oo =@ - )|}
.

r—1
Hel,
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CODES AND SYSTEMS

Set of equivalence classes of [n, k, d]qm/q nondegenerate codes:
C[n, k, d]qm/q

Set of equivalence classes of [n, k, d]gm/q systems: U[n, k, d]gm/q
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FROM CODES TO SYSTEMS

We define a map
q> . C[n, k, d]qm/q 4 U[n, k, d]qm/q

in this way:
* take [C] € C[n, k,d]|qn/q
® |et G be a generator matrix for C
* ®([C]): equivalence class of the F4-span of the columns of G.
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FRrROM SYSTEMS TO CODES

We define a map
(U U[n, k, d]qm/q - C[n, k, d]qm/q

in this way:
* take [U] € U[n, k, d]gm/q
e fix a basis {g1, ..., gn} for U;
® let G be the matrix whose columns are gy, ..., gn

e ®([U]): equivalence class of the code generated by G.
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RECALL FROM THE BASICS

Forve (Fgm)", V= (v1,...,Vn), Vi€ Fgn, 1 <i<n.
r(v) = dimg,((v1,..., Vp))

C < (Fgn)"
e C+0:

Amin(C) = min{r(v) : ve C,v # 0}
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RECALL FROM THE BASICS

NOTE THAT

dmin(C) < d"(C).

Forve (Fgn)", V= (v1,...,Vn), Vi €Fgn, 1 <i<n.

r(v) = min{w"(VA) : A € GLx(q)}
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BASES AND DIMENSIONS

Take a finite-dimensional vector space V over Fg.
Let U W< V;
B .= {bases of U}

max{[BNW|: Be B} =dim(UnW).
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AGAIN ON THE RANK

C [n, k]qm/q nondegenerate code, with generator matrix G. Let
u € (Fgm)¥ a nonzero vector.

If Uis the [n, k]qm/q System generated by the columns of G over Fq

r(UG) = n - dimg, (U n @*).
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BACK AND FORTH

R
&, U are well-defined maps and they’re one the inverse of the
other.

There’s then a bijection between C|n, k, d]qm/q and U[n, k, d]gm/q
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MINIMUM DISTANCE

C [n, k,d]qm/q code:

d > dimg,(supp(C)) - m(k — 1)
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MAXIMUM RANK

C [n, k]gm/q nondegenerate code:

maxr(C) = min{n, m}

R AvAGNANI
C [n, k]gm/q code; maxr(C) = k. If m > nthen C has a basis given
by vectors with all components in Fg.
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GENERALIZED WEIGHTS

C < (Fqn)" VRMC.

v5 - RANDRIANARISOA

wi(C) = min{dim(A) : A < (Fqm)", Frobenius closed dimg,_,(CNA) > i}

fori = 1,...,diqum(C) = k.
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GENERALIZED WEIGHTS

RANDRIANARISOA

C: [n, k, d]gm/q nondegenerate code and
U: [n, k, d]gm/q system associated to the code.

Foranyi=1,...dimg,(C) =k

wi(C) = n— max{dimg,(UN H) : H < (Fgn)*,Fgn — subspace,
codim(H) = i}

= min{dimz, (U + H) : H < (Fqn)*, Fqn — subspace,
codim(H) = i} — m(k — i)
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SimpLEX RMC

C [mk, k]gm/q code with k > 2 and generator matrix G.

TFAE
® C nondegenerate;
* colsps,(G) = (Fqn)*:
* C 1-weight code, dmin(C) = m;
dmin(C*) > 1;
dmin(C*) = 2;
C linearly equivalent to a code with generator matrix

G’ = (Klall...la™ " l)
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1-WEIGHT CODES

C [n, k, d]qm;q one-weight code with k > 2.

o effective length: km;
e d=m.
Isometry:
[km, k, m]gm,q simplex code.
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LINEAR SET

LuNARDON
U: [n, k]gm/q system.

Fq-linear set in PG(k — 1, q) of rank n associated to U:

Ly = {U)z,» - U € U\ {0}

((ﬁ)qu projective point corresponding to u).
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LINEAR SET

V < (Fqm)K, Fqm-subspace.

A = PG(V, Fgn)
WEIGHT OF A IN L

Wu(A) = dimz, (UN V).
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SCATTERED LINEAR SETS

BrokHuis-LAvRAUW
U: [n, k]gm;q system.

1
Lyl < 2 — =1+qg+..+q""

SCATTERED
When equality & wy(P) = 1forall P € Ly.
Maximum: biggest possible rank.

33/63



Link witH THE HAMMING METRIC

ABNR
U: [n, k]gm/q system.

qWU(P) -1 B qn -1

q-1 q-1-

PePG(k-1.g™)
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Link witH THE HAMMING METRIC

SHEEKEY - ABNR
U: [n, k]gmq system.
P e PG(k —1,q™)

qWU(P) _1
my(P) P
_ 91
mu(P) = q—1

PePG(k-1.g™)
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PROJECTIVE SYSTEMS AND LINEAR SYSTEMS

U(n,k)gm;q: [n, Klgm/q systems
P(n,k)qm: [n, k]gm projective systems

u(n,k)gmiq = P((@" = 1)/(g=1),k)qm
U (Lu, mu)

Multiset Ly, my multiplicity function.

The map is compatible with the equivalence classes of these
objects.
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PROJECTIVE SYSTEMS AND LINEAR SYSTEMS

Uln, k]qm,q: equivalence classes of [n, k]gm/q Systems
P[n, k]qm: equivalence classes of [n, k],m projective systems

Ext" : Uln, Klgn/q = Pl(q" = 1)/(g = 1), K]gn
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AssocIATED HAMMING CODE

Ext™ : Uln, k,d]gm/q = P[(q"—=1)/(q—1). k. (" =g )/(q—1)]gn

C nondegenerate [n, k, d]qm/q VRMC.
Associated Hamming Code: any code in (W o ExtH o ®)([C]).
Parameters:

[(9"-1)/(a-1).k.(a"=q"9)/(a—1)]gn
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AssocIATED HAMMING CODE

C nondegenerate [n, k, d]qm/q VRMC; rank-weight distribution
{Ai(C));

AH(CH) _ AI(C) ifj = q(;_q‘|
0 otherwise
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AssocIATED HAMMING CODE

C nondegenerate [n, k, d]qn/q VRMC; generalized weights {w;(C)};
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MINIMAL CODEWORD

C: [n, k, d]qm/q VRMC,

MINIMAL
¢ € C: if there is ¢ with supp(c’) € supp(c) it means that the two
codewords are one multiple of the other.
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LINEAR CUTTING BLOCKING SET

U [n, k]gm/q system is a linear cutting blocking set if for each H
Fqm—hyperplane (HN U)qu =H.

Idea: the associated linear set Ly cutting blocking set in
PG(k - 1,9™).
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CHARACTERIZING LINEAR CUTTING BLOCKING SETS

U: [n, k]gmq system. Linear cutting blocking set if and only if for
each H, H' Fgn—hyperplanes in (Fgm)k

HNUCHNU=H=H

U [n, k]gm/q linear cutting blocking set, for each H Fqn—hyperplane
in (qu)k
IHN Ul > g¢!
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A CORRESPONDENCE...

C [n, k]gm/q nondegenerate code and U its associated system. Let
G be a generator matrix for C.
u,v € (Fgm)k \ {0}

supp(uG) € supp(VG) & (Un(uy*t) 2 (Un (v)h)
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... THAT WE ALREADY SAW...

b C[n,k,d]qm/q - U[n,k,d]qm/q

W . U[n, k, d]qm/q - C[n, k, d]qm/q

&,V are well-defined maps and they’re one the inverse of the
other.

There’s then a bijection between C|n, k, d]qm,q and U[n, k, d]gm/q
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... REVISITED

&, U are well-defined maps and they’re one the inverse of the
other.

They induce a bijection between minimal RMC and linear cutting
blocking sets.
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NEW MINIMAL CODES

C [n, k]gm;q minimal code; G generator matrix, U € (Fqm)*

The [n+ 1, k]qm/q code C whose generator matrix is (Glur) is
minimal.

47/63



NEW MINIMAL CODES

C [n, k]gm;q minimal code.

THEN

Ve e C r(c) < dimg,(supp(C)) — k + 1
maxr(C) < dimg,(supp(C)) -k +1 <n—-k +1

n>k+m-1
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CONNECTING WITH HAMMING MINIMAL CODES

C [n, k]gm/q code.

Hamming minimal = rank-minimal
&=

C [n, k]gm/q nondegenerate code.

C rank-minimal & C" Hamming minimal
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MINIMALITY CONDITION

C [n, k]gm/q code.

C is minimal if and only if, for each €, ¢’ € C linearly independent, it
holds

Z q—r(E—ME') + (qm _ 1)q—r(6) _ q—r(é’) +1
A€E g\ (0}
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ASHIKMIN-BARG CONDITION

HAMMING CASE
C [n, k]qm code.

C minimal & iz < v
min qm-1

IN THE RANK-METRIC
The condition becomes trivial.
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SOME MINIMAL CODES

C [km, k, m|gm,q simplex code.

= C is minimal

A C nondegenerate [n, k]gm/q code with n > (k = 1)m + 1 is
minimal
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A C nondegenerate [n, 3]qm/q code with n > m + 2 is minimal and
with U as associated [n, 3]qm/q system .

Ly scattered = C minimal
BrokHUIS-LAVRAUW
If U [n, k]gm/q system with Ly scattered then

km
n<—
2

Maximum scattered linear sets: equality.
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SCATTERED LINEAR SETS

Km EVEN NUMBER - CSAIBOK-MARINO-POLVERINO-ZULLO
There’s a system U with parameters [km/2, k]qm/q S.t. Ly scattered

Km oDD NUMBER
Still much to do
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SCATTERED LINEAR SETS

BrockHuis-LavrRAuw
k, m positive integers, q prime power. The there exist a [ab, k]gm/q
system s.t. Ly scattered every time a | k, GCD(a, m) = 1

< EFE g=2a=1
km_m# otherwise

PuNcTURING
U with parameters [n, k]qm/q S.t. Ly scattered. If n > k there is a
[n—1,k]gm/q system V C U such that also Ly is scattered.
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WHAT HAPPENS THEN IN DIMENSION 3

m=+3,5 mod 6, m> 4.

There is then a nondegenerate minimal [m + 2, 3]4m /4 code.
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EXISTENCE OF MINIMAL CODES

m, n, k positive integers, n > k > 2. If the value

(@™ —1)(q™" i
(g™ —1)(gmk—1 —1

is positive, then there exists a minimal code with parameters

[, Klgm/g-

For each m, k > 2 there exists a minimal [2k + m — 2, k]qm/q code.
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LINEARITY INDEX

U [n, k]gm;q system

LINEARITY INDEX:

I(U) := max{dimg, (H) : H € (Fgn)", Fgn — subspace , H C U}

Invariant for equivalent systems.
Related to the generalized weights
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LINEARITY INDEX OF A CODE

C [n, k]gm,q nondegenerate code and U an [n, k]qm,q associated
system.

I(U) = k —min{i : wi(C) =n—(k-i)m}
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LINEARITY INDEX AND CODES

C [n, k]qm/q nondegenerate code and | is its linearity index.

W,'+1(C) - W,‘(C) =_—mei>k- /(C)

C [n, k]qm/q nondegenerate code

I(C)>n—k(m-1)
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LINEARITY INDEX AND CODES

U linear cutting blocking set with parameters [n, k]qm;q and
suppose there is T < (Fgn )k a Fgm-subspace with dimg, (T) = 1,
T C U. Then U/T is isomorphic to a linear cutting blocking set of
parameters [n — Im, k — l|gm/q.

U linear cutting blocking set with parameters [n, k]gm/q with
linearity index I. Suppose k — | > 2:

n-k>({+1)(m-1)

Let C be the nondegenerate [n, k]qm/q code associated to U. For
each1 <i<k-[ZK17 1 w(C) > n—im.
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LINEARITY INDEX AND CODES

C nondegenerate [(k — 1)m, k]gm/q code with I(C) = I.

TFAE
e C minimal
o |[<k-2

* wy(C)>m

k > 3 integer. There is a nondegenerate [(k — 1)m, k|qm,q code iff
m>3
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Thank you for your attention!



